Modeling the human Nav1.5 sodium channel: structural and mechanistic insights of ion permeation and drug blockade

نویسندگان

  • Marawan Ahmed
  • Horia Jalily Hasani
  • Aravindhan Ganesan
  • Michael Houghton
  • Khaled Barakat
چکیده

Abnormalities in the human Nav1.5 (hNav1.5) voltage-gated sodium ion channel (VGSC) are associated with a wide range of cardiac problems and diseases in humans. Current structural models of hNav1.5 are still far from complete and, consequently, their ability to study atomistic interactions of this channel is very limited. Here, we report a comprehensive atomistic model of the hNav1.5 ion channel, constructed using homology modeling technique and refined through long molecular dynamics simulations (680 ns) in the lipid membrane bilayer. Our model was comprehensively validated by using reported mutagenesis data, comparisons with previous models, and binding to a panel of known hNav1.5 blockers. The relatively long classical MD simulation was sufficient to observe a natural sodium permeation event across the channel's selectivity filters to reach the channel's central cavity, together with the identification of a unique role of the lysine residue. Electrostatic potential calculations revealed the existence of two potential binding sites for the sodium ion at the outer selectivity filters. To obtain further mechanistic insight into the permeation event from the central cavity to the intracellular region of the channel, we further employed "state-of-the-art" steered molecular dynamics (SMD) simulations. Our SMD simulations revealed two different pathways through which a sodium ion can be expelled from the channel. Further, the SMD simulations identified the key residues that are likely to control these processes. Finally, we discuss the potential binding modes of a panel of known hNav1.5 blockers to our structural model of hNav1.5. We believe that the data presented here will enhance our understanding of the structure-property relationships of the hNav1.5 ion channel and the underlying molecular mechanisms in sodium ion permeation and drug interactions. The results presented here could be useful for designing safer drugs that do not block the hNav1.5 channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Gating Properties and Use-Dependent Block of Nav1.5 and Nav1.7 Channels by Anti-Arrhythmics Mexiletine and Lidocaine

Mexiletine and lidocaine are widely used class IB anti-arrhythmic drugs that are considered to act by blocking voltage-gated open sodium currents for treatment of ventricular arrhythmias and relief of pain. To gain mechanistic insights into action of anti-arrhythmics, we characterized biophysical properties of Nav1.5 and Nav1.7 channels stably expressed in HEK293 cells and compared their use-de...

متن کامل

Protein arginine methyl transferases-3 and -5 increase cell surface expression of cardiac sodium channel.

The α-subunit of the cardiac voltage-gated sodium channel (NaV1.5) plays a central role in cardiomyocyte excitability. We have recently reported that NaV1.5 is post-translationally modified by arginine methylation. Here, we aimed to identify the enzymes that methylate NaV1.5, and to describe the role of arginine methylation on NaV1.5 function. Our results show that protein arginine methyl trans...

متن کامل

P 134: Use of Zinc in Drugs to Improve Neuroinflammation Disease

Zinc is a substance that regulates neural excitability by binding whit sodium channel and potassium channel. The efficiency of free zinc ion, make down the neural survival rate, reduced the peak amplitude of Na+ and make depolarization Na channel, increased the peak amplitude of transition outward k+ currents and delayed rectifier. Also it is an effective blocker of one subtype of tetrodoxine (...

متن کامل

An Inner Pore Residue (Asn406) in the Nav1.5 Channel Controls Slow Inactivation and Enhances Mibefradil Block to T-Type Ca Channel Levels

Mibefradil is a tetralol derivative once marketed to treat hypertension. Its primary target is the T-type Ca channel (IC50, 0.1–0.2 M), but it also blocks Na , K , Cl , and other Ca channels at higher concentrations. We have recently reported state-dependent mibefradil block of Na channels in which apparent affinity was enhanced when channels were recruited to slow-inactivated conformations. Th...

متن کامل

Identification of N-terminal protein acetylation and arginine methylation of the voltage-gated sodium channel in end-stage heart failure human heart.

The α subunit of the cardiac voltage-gated sodium channel, NaV1.5, provides the rapid sodium inward current that initiates cardiomyocyte action potentials. Here, we analyzed for the first time the post-translational modifications of NaV1.5 purified from end-stage heart failure human cardiac tissue. We identified R526 methylation as the major post-translational modification of any NaV1.5 arginin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017